Tuesday, August 31, 2010

Worms Used In Yoghurts

Progetto per l'appello del 13 settembre

The project is the same as the previous the appeal.

Friday, August 20, 2010

How To Put In Visor Cpx

Derivate e Formule Fondamentali

DERIVATE FONDAMENTALI:

Tramite le derivate delle principali funzioni si possono calcolare le derivate di funzioni più complesse usando le formule di derivazione.

la DERIVATA DI UNA COSTANTE è sempre nulla
D( C ) = 0
es: D( 36 ) = 0 ; D( -1/4 ) = 0 ; D( π ) = 0

la DERIVATA DELLA VARIABILE PRINCIPALE è sempre uguale ad uno
D( x ) = 1
es: D( 3x ) = 3*1 = 3 ; D( -x/2 ) = -1/2*1 = -1/2

la DERIVATA DI POTENZE DELLA VARIABILE PRINCIPALE è sempre uguale a nx elevato alla n-1
D( xn ) = nxn-1
es: D( 3x2 ) = 3*2x2-1 = 6x ; D( -x3/4 ) = -1/4*3x3-1 = -3x2/4

la DERIVATA DEL LOGARITMO NATURALE DELLA VARIABILE PRINCIPALE è sempre uguale ad 1 fratto la Variabile stessa
D( loge(x) ) = 1/x
es: D( 3log(x) ) = 3*1/x = 3/x ; D( -log(x)/2 ) = )-1/2)*(1/x) = -1/(2x)

la DERIVATA DEL LOGARITMO IN BASE a DELLA VARIABILE PRINCIPALE è sempre uguale ad 1 fratto la Variabile stessa per il Logaritmo di e in Base a
D( loga(x) ) = loga(e)/x
es: D( 3log2(x) ) = 3*log2(e)/x ; D( -log5(x)/2 ) = 1/2*log5(e)/x = log5(e)/(2x)

la DERIVATA DI e ELEVATO ALLA VARIABILE PRINCIPALE è sempre uguale ad e elevato alla Variabile stessa
D( ex ) = ex
es: D( 3ex ) = 3ex

la DERIVATA DI UN NUMERO ELEVATO ALLA VARIABILE PRINCIPALE è sempre uguale a tale Numero a tale Potenza moltiplicato per il Logaritmo naturale Del Numero alla base
D( ax ) = ax*loge(a)
es: D( 3x ) = 3x*loge(3) ; D( 5x/2 ) = 1/2*5x*loge(5) = 5x*loge(5)/2

la DERIVATA DI x ELEVATO ALLA x è uguale ad x elevato alla x per 1+logaritmo naturale di x
D( xx) = xx * (1 + loge (x))
es: D (3xx) = 3xx * (1 + loge (x))

the DERIVATIVE of the breast is always equal to the cosine
D (sin (x)) = cos (x)
es: D (3sin (x)) = 3cos (x) D (sin (x) / 2) = cos (x) / 2

the derivative of cosine is always equal to less breast
D (cos (x)) =-sin (x)
es: D (2cos (x)) =-2sin (x) D (-cos (x) / 3) = sin (x) / 3

the THE TANGENT DERIVATIVE is always equal to one divided by the cosine squared
D (tan (x)) = 1/cos2 (x)
es: D (3 tan (x)) = 3 * 1/cos2 (x) = 3 / cos2 (x), D (tan (x) / 2) = 1 / (2cos2 (x))

the derivative of the cotangent is always equal to one divided by the sine-squared
D (Cotan (x)) = 1/sin2 (x)
es: D (2cotan (x)) = 2 * 1/sin2 (x) 2/sin2 = (x) D (Cotan (x) / 3) = 1 / (3sin2 (x))

the derivative of the 'arcsine is always equal auno divided by the square root of x squared
1-D (asin ( x)) = 1/sqr (1-x2)
es: D (3asin (x)) = 3 * 1/sqr (1-x2) = 3/sqr (1-x2), D (asin (x) / 2) = 1 / (2sqr (1-x2))

the derivative of the 'arc cosine is always equal to minus one divided by the square root of x squared
1-D (acos (x)) = -1/sqr (1 - x2)
es: D (2acos (x)) = -2*1/sqr(1-x2) = -2/sqr(1-x2) ; D( acos(x)/3 ) = -1/(3sqr(1-x2))

la DERIVATA DELL' ARCOTANGENTE è sempre uguale ad uno fratto 1+x quadrato
D( atan(x) ) = 1/(1+x2)
es: D( 3atan(x) ) = 3*1/(1+x2) = 3/(1+x2) ; D( atan(x)/2 ) = 1/(1+x2)/3

la DERIVATA DELL' ARCOCOTANGENTE è sempre uguale a meno uno fratto 1+x quadrato
D( acotan(x) ) = -1/(1+x2)
es: D( 2acotan(x) ) = -2*1/(1+x2) = -2/(1+x2 ; D( acotan(x)/3 ) = -1/(3(1+x2))


FORMULE DI DERIVAZIONE:

Con le formule di derivazione any function can be derived starting from the derived key.

the derivative of the SUM of two (or more) functions is equal to the sum of the derivatives of each function
D (f (x) + g (x)) = f '(x) + g' (x)
example: D (x2 +3 x) = 2x +3

the derivative of the product of two functions is equal to the sum of the first function for the derivation of the second plus the second function for the derivation of the first
D (f (x) * g ( x)) = f (x) * g '(x) + f' (x) * g (x)
es: D (x2 * x3) = x2 * x * 3x 3 +2 = 3x2 = 9x2 +6 x2

the derivative of the ratio of two functions is equal to the difference between denominator and Derivative Del numeratore meno numeratore per Derivata Del denominatore, il tutto diviso per il Quadrato Del denominatore
D( f(x)/g(x) ) = (f'(x)*g(x)-f(x)*g'(x))/g2(x)
es: D( x2/sin(x) ) = (sin(x)*2x-x2*cos(x))/sin2(x) = (2xsin(x)-x2cos(x))/sin2(x)

la DERIVATA DI UNA POTENZA n di una Funzione è uguale ad n volte tale Funzione elevata alla n-1, moltiplicati per la Derivata della Funzione stessa
D( (f(x))n ) = n(f(x))n-1 * f'(x)
es: D( (2x+1)2 ) = 2(2x+1)2-1*D(2x+1) = 2(2x+1)*2 = 4(2x+1) = 8x+4

la DERIVATA DI UNA FUNZIONE ELEVATA AD UN' ALTRA FUNCTION is derived from the following formula, or recalling that fg = g * log (f)
D ((f (x)) g (x)) = (f (x)) g (x) * (g (x) * f '(x) / f (x) + g' (x) * log (f (x)))
es: D (3xsin (x)) = 3xsin (x) * (sin (x) * D (3x ) / 3x + D (sin (x)) * log (3x)) = 3xsin (x) * (sin (x) / x + cos (x) * log (3x))

the derivative of a function FUNCTION is equal to the exterior derivative of functions for the derivative of the internal variable
D (f (g (x))) = f '(g (x)) * g' (x)
es: D (2sin (3x)) = 2cos (3x) * D (3x) = 2cos (3x) * 3 = 6cos (3x)

Bluetooth Transfer Interrupted

Definizione di Derivata di una Funzione

is defined DERIVATA di una Funzione f(x) nel Punto xo il Limite Del Rapporto incrementale al tendere a zero dell' Incremento e sempre che tale Limite esista.

Thursday, August 19, 2010

Cody Corbin Fisher Blog

Relazioni fra continuita' e derivabilita'

C'e' da dire subito che una funzione continua non e' sempre derivabile, infatti se ho un punto con un angolo (punto angoloso) non ho la derivata perche' la derivata destra e' diversa dalla derivata sinistra, inoltre posso pensare curve che non hanno nessun punto derivabile: la curva di Peano, la curva di von Kock.
--------------------------------------------------------------------------------

curva di Peano

Per costruire la curva di Peano su un quadrato dividilo in 4 parti e considera i centri dei sottoquadrati, congiungili con dei segmenti (prima figura) dividi poi ognuno dei sottoquadrati in 4 sotto-sottoquadrati e congiungili come vedi nella seconda figura. Continuando il procedimento riempirai tutto il quadrato con una curva che non sara' derivabile in nessun punto
--------------------------------------------------------------------------------

curva di von Kock

prendi un segmento, dividilo in tre parti uguali e su quella in mezzo al posto del segmento prendi due lati di un triangolo equilatero, ripeti il procedimento su ognuno dei 4 segmenti cosi' ottenuti, Procedendo all' infinito la curva che si ottiene non ha nessun punto derivabile
--------------------------------------------------------------------------------
Dimostriamo, to complete the page, and that if a function 'and then derivable'
I also continue to hypothesis that there is a finite derivative f '(x0)
then I have to prove that the function and' continua (thesis)
The definition of continuity ' and 'that
LIMx-> x0 f (x) = f (x0)
or even
Limhi-> 0 f (x0 + h) = f (x0)
ie'
Limhi-> 0 f (x0 + h) - f (x0) = 0


---------------------------------------- ----------------------------------------

Demonstration
Parto expression
Limhi -> 0 f (x0 + h) - f (x0) I have to prove that that is

Multiply above and below zero for h
f (x0 + h) - f(x0)
limh->0 --------------- · h =
h
la prima parte del prodotto e' la derivata
= f '(x0) ·limh->0 h = f '(x0) · 0 = 0
come volevamo dimostrare

Riddle About Henrey Viii Wives

Differenziale di una funzione

In parole molto povere il differenziale di una funzione non e' altro che l' incremento TB fatto sulla tangente invece che sulla curva; si ha

TB
----- = m
AB

ora e'
AB = dx
m = f '(x)
ponendo TB = df
otteniamo

df
---- = f '(x)
dx

che equivale a:

df = f '(x)·dx

Cioe' il differnziale of a function and 'equal to the derivative of the function multiplied by the increase in right
-------------------------------- ------------------------------------------------ This
FT difference between the differential function of the increase in TB and FB you can 'and show that' an infinitesimal of higher order than the right (or h) and will 'then used to approximate functions at local level through series of functions: Taylor and Mac Laurin

BF = BT + TF

f (x0 + h) - f (x0) = df + a (h)
being a (h) = TF

Colorful Skirt Outfits

Derivate Parziali

Veramente per poter fare le derivate parziali bisognerebbe parlare prima di funzioni a piu' incognite, cioe' del tipo

z = f(x,y)

intuitivamente sono funzioni ove le variabili indipendenti sono piu' di una

--------------------------------------------------------------------------------

nelle scuole medie superiori ho visto usarle solo nella geometria cartesiana dello spazio e nelle equazioni differenziali alle derivate parziali in qualche istituto tecnico, invece sono molto usate nel primo biennio delle universita' soprattutto per lo study of surfaces and solids
------------------------------------------- -------------------------------------
In practice it is necessary to focus on one variable at a time Whereas the other as a constant:
example consider the function: z =
x4y x5 + 4 - 3 x + 6 y4 y5

Its first derivative with respect to x (I have to consider y as a constant) will '
z
----= x3y 5x4 + 16 - 3 x y4


while the first derivative with respect to y will '


----= z 4 x4 - y4 +30 12 xy3
y

if you need see the calculations in detail
One thing to consider is' that le derivate miste fatte con le stesse variabili e gli stessi passaggi sono uguali, cioe'

IIIz IIIz IIIz

---------- = ------------------ = --------------

x2 y x y x y x2



Ponendo x 2 = x · x

Cioe' se derivo prima due volte rispetto ad x e poi derivo rispetto ad y ottengo lo stesso risultato che otterrei derivando prima rispetto ad x poi ad y poi ancora rispetto ad x oppure derivando prima rispetto ad y e poi due volte rispetto ad x

Mandingocytherea Online

Derivate Parziali

really to do the partial derivatives of functions should first speak to more 'unknowns, that' type
z = f(x,y)
intuitivamente sono funzioni ove le variabili indipendenti sono piu' di una
--------------------------------------------------------------------------------
nelle scuole medie superiori ho visto usarle solo nella geometria cartesiana dello spazio e nelle equazioni differenziali alle derivate parziali in qualche istituto tecnico, invece sono molto usate nel primo biennio delle universita' soprattutto per lo studio di superfici e di solidi
--------------------------------------------------------------------------------
In pratica occorre focalizzare l'attenzione su una variabile per volta considerando l'altra come una costante:
ad esempio considero la funzione:
z = x5 + 4 x4y - 3 x y4 + 6 y5

Its first derivative with respect to x (I have to consider y as a constant) will 'z

----= x3y 5x4 + 16 - 3 x y4


while the first derivative with respect to y will'

z
----= 4 x4 - y4 +30 12 xy3
y

if you need to see the calculations in detail
One thing to consider is' that the mixed derivatives made with the same variables and the same steps are the same , that '
IIIz IIIz IIIz
---------- = ------------------ = ------------ -
x2 x2 yxyxy

Putting x 2 = x x ·
I mean 'if derived the first two times then derived with respect to x and y get over it stesso risultato che otterrei derivando prima rispetto ad x poi ad y poi ancora rispetto ad x oppure derivando prima rispetto ad y e poi due volte rispetto ad x

Cost Of Building A Squash Court

Teorema di Lagrange

If you take the theorem of Rolle and Lagrange's theorem turns get (compare the two figures, this one with that of the previous page):
fact the assumptions are same except in extreme value equal to [f (a) = f (b)] and also the thesis 'that there is a point where the tangent and' parallel to the segment joining the ends of the curve considered (ie the derivative has the same inclination of the segment).
--------------------------------------------------------------------------------
Matematicamente:
Data una funzione y=f(x)
continua in un intervallo chiuso e limitato [a, b]
e derivabile all'interno dell'intervallo allora esiste all'interno dell'intervallo un punto c tale che:
f(b) - f(a)
f '(c)= ---------------
b-a

What Does Total Bili Mean

Teorema di Lagrange

Se il teorema di Lagrange era una generalizzazione del teorema di Rolle ora il teorema di Cauchy e' un ampliamento del teorema di Lagrange, le ipotesi saranno le stesse eccetto il fatto that it 's a second function as a denominator must' never have zero value in the range of validity 'of the theorem.
------------------------------------------------- -------------------------------
Mathematically:
Given two functions y = f (x) and y = g (x)
continue in a closed and bounded interval [a, b] and differentiable within the interval

with g (x) 0 in the range of g '(x) 0 inside the interval then there exists within
interval a point c such that:
f '(c) f (b) - f (a) ---------------
--------=
g '(c) g (b) - g (a) -----------------------------------
--------------------------------------------- Intuitively
enough to make the relationship between two applications of the theorem of Lagrange in the same range for two different functions in mind that the function in the denominator should never cancel
------------------ -------------------------------------------------- ------------

Fundraising Ideas Katydids Candy

Teorema di Rolle

Questo teorema afferma che se una funzione e' continua in un intervallo chiuso e limitato e derivabile all'interno dell'intervallo stesso e se inoltre agli estremi dell'intervallo assume lo stesso valore allora esiste almeno un punto dell'intervallo in cui la derivata della funzione vale 0.
as seen from the figure in practice means that if the function starts at a certain level and reaches the same value without spikes and then if 'continues and if the interval and' closed bounded there must be a point where it stopped increasing (or decrease) and back (you can 'also say that the tangent at that point and' horizontal)
Mathematically:
if y = f (x) and 'a continuous function in a closed and bounded interval [a, b ] such that f (a) = f (b) then there exists a point c belonging to [a, b] such that f '(c) = 0
--------------- -------------------------------------------------- ---------------
Using this theorem in both oral and written many checks is that it must
test four hypotheses that the function is continuous
that the function is differentiable
within the range that the range is closed and limited
that the values \u200b\u200bat the extremes of the range are equal
now tries to prove that the theorem does not and 'occurred (ie' do an example where the theorem is not valid) if it lacks the former, or the third or second and third ...
understand that to solve it you have to think and to know exactly what is meant by a continuous function, closed bounded interval by interval and so on.
After trying to just compare these examples with the rather good and some that do not include all possible cases

80s Male Aerobic Instructor

Derivata di una funzione di funzione

This is' perhaps the 'do more' important to know how to exactly calculate the derivative: To make the derivative of a function of the derivative of the function before I external function without touching the inside and then multiply by the derivative of the inside.
In symbols, if I
y = f (g (x))

then y '= f' (g (x)) · g '(x)
Let's understand this with an example
y = sin (logx )
I do the first derivative of the breast and that 'cos
then the first part of the derivative of
sen (logx) will' cos (logx)
as if we had instead of x logx
now I have to do and that the derivative of logx '1 / x
then I'll have' y '= cos (logx) • 1 / x -----------
-------------------------------------------------- -------------------
To make it 'easy to think of an onion: the onion and' made in layers to peel and I have to remove the first layer, then the second , then the third ...
The role and function of 'layered, first I have to derive the first function and leave the other, then the second .... I have left until last when the x
---------------------------------------- ----------------------------------------
we see another example;
y = ( log (senx) 5 Here I
exponentiation function 5 which contains the log that contains the breast surrounding the root that contains x
Before I do the derivative of the power 5: x5
if the derivative is 5x4, in this case because 'instead of x I log (senx) the first part of the derivative will be '
5 (log (senx) 4
turn now to the second function and that' the logarithm:
logx if the derivative is 1 / x,
because 'instead of x I senx
the second part of the derivative will be ':
1 / (senx)
turn now to the third function and that' the breast
senx if the derivative is cosx,
because 'instead of x I x
the third part of will be derived ':
cosx
Step hours and the fourth function that 'the root
the derivative of x' 1 / (2x) and I came to this and then x 'the last part
collecting
y' = 5 (log (senx) 4 ° [1 / (senx)], cosx · [1 / (2x)]

How Do I Remove Alluminium Oxide

Esercizi di Riepilogo

You are now provided a series of exercises on the calculation of the derivative: try to do it by clicking on it then just go to see the solution and the solution if you want you can also see how the exercise is carried out
-------- -------------------------------------------------- ----------------------
All logarithms unless explicit notice is to be understood and based
------------ -------------------------------------------------- ------------------

Calculate the derivative of the following functions
sen2x
y = x3 y = x2 ex + y = x and x
7xexlogx
4x2cos y = (4x3 + 6x + 2) = y
3sen5x 2cos5x
y = 3x3 + x2
4sen y = y = x3 · sen3x
2arctang E2x
5arctang y = (x3 + 1) = y
sen3
x4 (1 + xn) m = y

-------------- 1 - xn

Yellow Running Shorts, Juno

Derivata del quoziente di due funzioni

One important thing to remember is' that the derivative you can 'only do those points where the function in the denominator and' non-zero
- -------------------------------------------------- ----------------------------
If I have the quotient of two functions and I do want the derivative: The derivative of the first function
the second does not least the first derived function as such for the derivative of the second, all divided by the second function the square symbols in

if f (x) = y
--------
g (x)

then f '(x) · g (x) - f (x) · g' (x )
y '= ---------------------------------
[g (x)] 2

example:
the derivative of the function y =
x4/senx
The derivative of x4 and 'The derivative of 4x3
senx and' cosx
then
4x3senx - x4cosx
y '= ------------ -----------
sen2x

I put the brackets to make more 'understandable expression
writing with the surroundings and normal' better leave them out
---------- -------------------------------------------------- --------------------
Usually in schools demonstration jumps, however if you need proof of the rule of the derivative of a quotient

American Preparation H Wrap

Derivata del prodotto di funzioni

Here we begin to move on the complicated: If I
the product of two functions and I do want the derivative:
The first derivative of the second derivative is not over 'the first in that state for the second derivative of the symbols in

if y = f (x) · g (x)

then y' = f '(x) · g (x) + f (x) · g '(x)
example
the derivative of the function y =
x3senx
The derivative of x3 and' The derivative of 3x2
senx and 'cosx

then Y' = 3x2senx + x3cosx
---------------------------------------------- ----------------------------------
important consequences: if I make a constant for the derivative of a function will be enough 'multiply the constant for the derivative of the function demonstration

ie' I can extract the sign of the constants derived
example
y = 3x4 3
Since a constant multiplied by the derivative of x4
y '= 3 • 4 x3
y' = 12 x3
----------------------------- -------------------------------------------------- -
If you need proof of the rule of the derivative of a product
----------------------------------- We do some exercises to
--------------------------------------------- fine tune the rule
--------------------------------------------- -----------------------------------
And if I do the derivative of a product of three or more 'functions?
Do not worry, the rule 'always the same, but adapted to more' functions, for example, if you do
derivative of the function y = f (x) · g (x) * h (x)

then y '= f '(x) · g (x) * h (x) + f (x) · g' (x) * h (x) + f (x) · g (x) * h '(x)
example:
the derivative of the function y = x5
· cosx · Log
The derivative of x and x5 '5x4
The derivative of cosx and' - senx
The derivative of log x '1 / x

then y' = 5x4 · cosx · Log x + x5 · (- senx) · log x + x5 · cosx • 1 / x
ie '
y' = 5x4·cosx ·log x - x5·senx ·log x + x5·cosx · 1/x

Should Lasagna Be Covered When Baking?

Qualche Esercizio sull'applicazione delle Derivate

Purtroppo gli esercizi che ora possiamo fare sono davvero pochi in quanto ancora non abbiamo le regole operative; comunque cominciamo con quelli che possiamo fare:
Calcoliamo la derivata di
y = 1/x4
Basta ricordare che per le regole sulle potenze si ha:
1/x4 = x-4
e quindi applicando la regola
y' = (-4)x(-4-1)
y' = -4x-5
cioe' (ricordando che devi mettere il risultato nella stessa forma da cui sei partito)
y = - 4/x5
--------------------------------------------------------------------------------
Proviamo ora a calcolare la derivata di:
y = 3x
Per le regole sulle potenze si ha:
3x = x1/3
e quindi applicando la regola
y' = (1/3)x(1/3 - 1)
y' = (1/3)x(-2/3)
Cambio di segno l'esponente e porto x al denominatore
y' = 1 / (3 x2/3)
y' = 1 / (3 3x 2)
le parentesi negli ultimi risultati servono solo a mostrare che tutto il termine e' sotto il segno di frazione; scrivendo normalmente la frazione puoi omettere le parentesi
--------------------------------------------------------------------------------
Calcoliamo la derivata di
y = 5x3
Per le regole sulle potenze si ha:
5x3 = x3/5
e quindi applicando la regola
y' = (3/5)x(3/5 - 1)
y' = 3 / (5 x-2/5)
y' = 3 / (5 5x 2)
--------------------------------------------------------------------------------
calcolare:
y = 1 / (4x3)
Per le regole sulle potenze si ha:
1 / (4x3)= 1 / (x3/4) = x-3/4
e quindi applicando la regola
y' = (-3/4)x(-3/4 - 1)
y' = -3 / (4 x-7/4)
y' = -3 / (4 4x 7)
posso estrarre da radice
y' = -3 / (4x 4x 3)
--------------------------------------------------------------------------------
Proviamo ora per finire
y = (4x3) / (3x2)
Per le regole sulle potenze si ha:
(4x3) / (3x2)= ( x3/4 ) / ( x2/3)=
= x3/4·x-2/3 = x(3/4 - 2/3) = x1 / 12
quindi applicando la regola:
y' = ( 1/12) x( 1/12 - 1)
y '= (1 / 12) x-11/12
y' = 1 / (12x11 12)

Small Cabins On Wheels

Derivata di una somma o differenza di funzioni

E' la regola piu' facile ed intuitiva:
per fare la derivata di una somma ( o differenza ) di funzioni basta fare la derivata delle singole funzioni ed il segno non cambia
--------------------------------------------------------------------------------
esempio:
Facciamo la derivata di
y = x4 + x3 - x2 - x
La derivata di x4 e' 4x3
La derivata di x3 e' 3x2
La derivata di x2 e' 2x
La derivata di x e' 1
quindi
y' = 4x3 + 3x2 - 2x -1

Lots Of Ewcm Period Late

Tabella Principali Derivate

constant y = y '= 0
y = xy' = 1
xn = y y '= n xn-1
y = xy '= 1 / y = 2x
senx y' = cosx
y = cosx y '= - senx
Tangxia y = y' = 1/cos2x
or y '= y = 1 + tang2x
cotgx y '= y = ex -1/sen2x
y' = ex
y = x y '= ax log in
y = log xy' = 1 / x y = loga
xy '= 1 / (xlog a) = (loga e) / y = arcsin x
xy '= 1 / (1 - x2)
arccosx y = y' = -1 / (1 - x2)
arctang y = xy '= 1 / (1 + x2)
arcctgx y = y '= - 1 / (1 + x2)

Wrote Cover Letter Clothing Store

Applicazioni sulle derivata

Since the derivative, as it is 'made me' speed 'with which varies as a function of x and y, it' s possible to use derivatives in all those phenomena where there interested in having the speed 'variation of the same phenomenon:
example we calculate the spatial variation with respect to time, that' speed ', or the change of speed' with respect to time, that 'the acceleration or velocity' of a chemical reaction or the flow of an electric current so
------------------------------------- -------------------------------------------
However now we must try to understand how this new toy for future then make the best use

Can Herpes Outbreak Be On The Stomach

Significato geometrico di Derivata Definition of Derivative

To understand the geometric meaning of the derivative as well must be able to find the tangent to a curve at a point:
Taking a curve we set a point P and then another point P 'other than P and draw the straight line PP 'that's enough to slide P' on the curve towards P and when P 'will be identical to P we have the tangent to the curve at P (I traced the rays instead of straight lines to make more' simple picture)
------------------------------------------------- -------------------------------
Definition: defining tangent to a curve in a position limit of the line from behind a rope to tighten the rope on the second point primo
--------------------------------------------------------------------------------
Ora se riprendiamo la definizione di derivata, vedi che quando h tende a zero il secondo punto sulla curva si sposta verso il primo punto fino a coincidere
inoltre il rapporto incrementale e' uguale al coefficiente angolare della retta che congiunge i due punti sulla curva.
Quindi, al limite, la derivata ed il coefficiente angolare della retta tangente alla curva devono coincidere cioe':
--------------------------------------------------------------------------------
Definizione: la derivata di una funzione in un punto e' uguale al coefficiente angolare della retta tangente alla funzione in quel punto



-------------------------------------------------- ------------------------------



really need to make a small clarification here: the tangent and 'always on one side while the derivative of the curve is on a chord of the curve: ie 'the derivative and the slope of the tangent for something different, but something so small (infinitesimal) to affect the calculations, however, talking about the return on this concept of differential

Wacth Ross Kemp On Gangs Oline



We see how y varies when x varies in a regular manner: the system more intuitively 'simple' to consider an interval on the y and the corresponding interval on the x and it the report: this will give me 'the average change. If you want the change to a point I'll have 'narrow ranges up to that point. Mathematically
: consider points xi axis
x0 and x0 + h, in their correspondence avro 'points
f (x0) and f (x0 + h) on the y axis
The distance between f (x0) and f (x0 + h) on the y axis (vertical) will be '
f (x0 + h) - f (x0)
while the distance between x and x0 the x axis will '
x0 + h - x0 = h
quotient call the ratio between the y-axis the distance along the x axis:

f (x0 + h) - f (x0)
------- ------------- = quotient
h

Now to get the derivative at the point x0 will be enough 'to tighten the interval by decreasing h

f (x0 + h) - f (x0)
Limhi-> 0 ----------------- = f '(x0) h



--------------------------------------- -----------------------------------------
Definition: derivative of a function is defined a point in the limit (if it exists and 'end) of the relationship of incremental approaches zero' h increase
------------------------- -------------------------------------------------- -----
To have derived general will be enough 'to consider the point as x, that is' not fixed but generic x-axis

Free Samples Of Vote Of Thanks For Wedding

Because the derivatives

The concept of limit, although very useful to replace a point, however, has a range of defects: in fact, using the concept of limit to a point I can have only a local view of a function: it 's like I wanted to study a road at night taking advantage of the light of any lamp: it can 'see at that point and close to that point but if you want to know what's going on a bit' more 'in the' should 'have another lamp.
We need something that allows us to see the function in its entirety and that something will be 'the derivative;
-------------------------- -------------------------------------------------- ----
Imagine having a function and a point on the x-axis which corresponds to a point y axis, if we think that the point on the x axis moves with regularity 'The Heart' on the y axis?
I'll see 'that the point on the y axis should be more' fast or slower depending on the slope of the function:
if you look at the picture on the right arrows to see that the same x-axis are different arrows on the y axis and this' due to speed 'with which they aggregate the points on y with respect to points on the x
Before the function (the point on the y axis corresponding to x) falls rapidly then gradually slows down the speed' to a stop where there is' the minimum and then change direction and speed takes 'going up
If now we are able to express how changes of speed' to vary the point on the x-y on a regular basis we will have something that will allow us to 'see the whole function and not just a small part as in the case of the limit.
now is to express this concept mathematically:
How does the point on the y axis when the point x moves regularly?

Signs Of Gallbladder Attack Vs Flu

E-school Arrigo Amadori: Summary of Derivative


01 - Derivative

A function y = f (x) is represented by a curve on the Cartesian plane. Even a straight line is
a particular type of curve: a curve is a "slope" constant. A

any curve, however, has in general, point by point, a different slope.

01 Slope.

Let us now define quantitatively the concept of slope. Already we find the slope
indicated as a percentage of danger signs in the streets of the mountain.

The definition of slope in mathematics is similar to that used in road signs.
a slope of 10% has the following geometric meaning:



the slope is the vertical relationship between the catheter and catheter
horizontal triangle as shown. So, in this case, slope = 10% = 10/100 = 0.1.

If the catheter was 100 meters as vertical and horizontal, the slope would be 100%
or equal to 1, and corresponds to an angle of 45 °.



With the growth of the catheter will have vertical slopes increasing to infinity. For example,
a gradient of 700% or greater than 7, meaning that with the increase of the slope, the angle at the base (left) tends to draw ever closer to 90 degrees.
When the angle at the base will be 90 °, the slope will be infinite.

The slope is then the ratio of the catheter vertical and horizontal.

If this definition we report on a curve, we can define a point in the slope of the latter
the tangent to the curve at the specified point:

the curve represents the function y = f (x). The slope of the curve the point P is the slope of the tangent to the curve
drawn at the same point P.

Point by point, the slope is different in general.




02 - Derivative.

The slope of a curve at a point is called the derivative of the function at that point.

The concept of derivative is of fundamental importance and forms the basis of differential calculus. With
derived one can study the performance of a function or calculate the solutions of equations whose unknowns
are not just numbers but functions. These types of equations are called differential equations.

The derivative is itself a function as a point per punto, essa assume valori in corrispondenza della x.
La derivata della funzione y = f(x) è quindi una funzione della x e si indica con la scrittura y = f ' (x). Essa si chiama
anche derivata prima.

Essendo la derivata prima una funzione, se si fa la derivata di questa, si ottiene la derivata seconda y = f '' (x).
Dalla derivata seconda si ottiene la derivata terza e così via.

03 - Studio di funzione.

Vediamo ora alcuni esempi in cui di ciascuna funzione data definiremo punto per punto sia la derivata prima
che la derivata seconda.

Consideriamo la funzione y = x + 1. Essa è rappresentata nel piano cartesiano da una retta obliqua.



The slope of a line is obviously constant at every point where its derivative is constant. In this case
, forming a straight angle of 45 °, the derivative is equal to 1 at any point on the line. The first derivative function that is being so y = 1. The derivative of the first derivative is the derivative
second. It is 0 at any point because the first derivative, being a horizontal line,
has no slope at all points. The second derivative is then y = 0.

Now consider the function y = x ². It is represented by a parabola at any point at which the slope
is variable.



Nell'origine 0 la pendenza è nulla perché la tangente alla parabola è ivi orizzontale. A desta dell'origine, la pendenza
è positiva e cresce via via che ci si allontana dall'origine verso destra. A sinistra, invece, la pendenza è negativa e
cresce in valore assoluto più ci si allontana dall'origine verso sinistra.

Nei
punti in cui la derivata prima è nulla si hanno dei punti di massimo e minimo relativo.

Come si vede dall'esempio la derivata è uno strumento fondamentale per lo studio di una funzione, cioè
per individuarne il comportamento. Dove cresce, dove decresce e dove vi sono massimi e minimi relativi.

Se la derivata è positiva, the function is increasing there, if the derivative is negative, the function is decreasing.
If the derivative is zero, there can there be a maximum or a relative minimum.

The calculation of the derivative of a given function is feasible in principle forever. We show here some
formulas used for this purpose:

submode
y = k (where k is any number) y '= 0
y = kxy' = k
y = k x ² y '= 2 kx
y = ³ y k x 'k = 3 x ²
... ...

If the function y = x ³ - 3x ² +2 x calculating the first derivative is:

y ' = 3x ² - 6x + 2

while the second derivative:

y''= 6x - 6

Note that the derivative of a sum of terms is done by adding the derivatives of each term.
Also note that the first derivative of y = f (x) can be indicated simply by the symbol y 'while the second derivative y''
with the symbol.

04 - Differential Equations.

In physics we study the quantities that are measured by observing natural phenomena to derive
mathematical laws that express the interdependence. This, in brief, is the purpose and the method of physics.

Suppose a certain size y is represented by a function una variabile y = f(x), cioè
che la grandezza y vari in funzione della grandezza x. Supponiamo anche che questa grandezza sia tale che
la sua derivata sia uguale in ogni punto alla somma fra la x e la y. In sintesi si supponga che :

y ' = x + y.

Questa è una equazione differenziale. Una equazione in cui l'incognita non è un numero ma una funzione.

Le equazioni differenziali sono il cuore della fisica. Tutte le leggi fisiche note sono espresse in termini di
equazioni differenziali. Risolvendo queste equazioni si ricavano le grandezze fisiche nel loro variare in
funzione di altre grandezze fisiche.

La soluzione delle equazioni differenziali non è always possible in analytical terms, that is exactly.
In many cases you must then use methods of numerical approximation to the realizable computer.

The proposed above, assuming that the curve passes through 0, we obtain:



Note that the origin 0, the value of x + y is obviously 0 and hence y 'should be 0. The curve is sought
then tangent to the axis of x in 0.

Without going into detail, just mention that we have found the solution of differential
using a very simple method of numerical approximation based on the fact that the line
tangent to a curve at a point near that point is "confused" with it:



The derivative of the function P is Q'H / HP. If the point Q is very close to point P, the derivative can be approximated with
QH / HP because the points Q 'and Q tend to overlap. With this artifice can put
QH = (Q'H / HP) HP * and then from the point P is obtained, although approximate, the point
Q and similarly all subsequent paragraphs. You can get the curve right away.

This method is the basis of many techniques of approximation of differential equations feasible
to your computer.

Finish.